On using acoustic environment classification for statistical model-based speech enhancement

نویسندگان

  • Jae-Hun Choi
  • Joon-Hyuk Chang
چکیده

In this paper, we present a statistical model-based speech enhancement technique using acoustic environment classification supported by a Gaussian mixture model (GMM). In the data training stage, the principal parameters of the statistical model-based speech enhancement algorithm such as the weighting parameter in the decision-directed (DD) method, the long-term smoothing parameter of the noise estimation, and the control parameter of the minimum gain value are uniquely set as optimal operating points according to the given noise information to ensure the best performance for each noise. These optimal operating points, which are specific to the different background noises, are estimated based on the composite measures, which are the objective quality measures representing the highest correlation with the actual speech quality processed by noise suppression algorithms. In the on-line environment-aware speech enhancement step, the noise classification is performed on a frame-by-frame basis using the maximum likelihood (ML)-based Gaussian mixture model (GMM). The speech absence probability (SAP) is used to detect the speech absence periods and to update the likelihood of the GMM. According to the classified noise information for each frame, we assign the optimal values to the aforementioned three parameters for speech enhancement. We evaluated the performances of the proposed methods using objective speech quality measures and subjective listening tests under various noise environments. Our experimental results showed that the proposed method yields better performances than does a conventional algorithm with fixed parameters. 2011 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Soft Decision-Based Speech Enhancement Using Acoustic Noise Classification

In this letter, we present a speech enhancement technique based on the ambient noise classification incorporating the Gaussian mixture model (GMM). The principal parameters of the statistical model-based speech enhancement algorithm such as the weighting parameter in the decision-directed (DD) method and the long-term smoothing parameter of the noise estimation, are chosen as different values a...

متن کامل

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

A Statistical Model-Based Speech Enhancement Using Acoustic Noise Classification for Robust Speech Communication

In this paper, we present a speech enhancement technique based on the ambient noise classification that incorporates the Gaussian mixture model (GMM). The principal parameters of the statistical modelbased speech enhancement algorithm such as the weighting parameter in the decision-directed (DD) method and the long-term smoothing parameter of the noise estimation, are set according to the class...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

A Comparative Study of Gender and Age Classification in Speech Signals

Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Speech Communication

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2012